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A criterion is proposed for the correctness of a complete system of conservation laws which assumes the maximum compatibility 
between the domain of convexity of a closing conservation law and the domain of hyperbolicity of the differential model. A correct 
complete system of conservation laws is chosen on the basis of this criterion for a model of two-layer “shallow water” with a free 
upper boundary in which the laws of conse~ation of mass in the layers, of total momentum and di~ontinuity in the velocity at 
the interface of the layers are the basic conservation laws and the law of conservation of the total energy is the closing conservation 
law. An analysis of the stable shock (intermittent) waves permitted by this system is presented. 0 2001 Elsevier Science Ltd. All 
rights reserved. 

1. INTRODUCTION 

Three differential models of two-layer “shallow water” were derived and analysed in [l]: model I is a 
model with a free upper boundary, II is a model “under a cover” and their common limit case is model 
III. Hyperbolic@ domains were constructed for these models and, in this connection, the problem arose 
of formulating these models in the form of complete system of conservation laws and of investigating 
the stable discontinuous solutions with shock waves which are permitted by these systems. 

One of the possible approaches to solving this problem, which dates back to the classical model of 
one-dimensional gas dynamics [2], is associated with the proof of the unique solvability of the problem 
of the decay of an arbitrary discontinuity in the hyperbolic@ domain. This approach has been imple- 
mented in the case of the simplest model III [3]. However, it was impossible to extend this successfully 
to the more complex models I and II since the problems which arise here concerning the decay of a 
discontinuity are too complex, and it has been found to be impossible to carry out a complete mathe- 
matical analysis of them in the general case. 

Subsequently, more structured models were developed for investigating the wave flows of stratified 
“shallow water” in which the interface between the two principal layers is replaced by a special mixing 
layer [4] or a continuous change in the density along the vertical is introduced [5,6]. However, the basis 
of these models will not be sufficiently useful without carrying out a comparative analysis of them with 
the complete systems of conservation laws for the basic models of two-layer “shallow water” (models 
I and II), which are their simple limiting cases. 

In this connection, a solution of the problem formulated in [l] is proposed here for model I with a 
free upper boundary, which is of the greatest physical interest. This solution was obtained using the 
criterion of the complete system of conservation laws presented below, which assumes that there is 
maximum compatibility between the domain of convexity of the closing conservation law and the domain 
of hyperbolic@ of the differential model. 

2. THE CRITERION FOR THE CORRECTNESS OF THE COMPLETE 
SYSTEM OF CONSERVATION LAWS 

The hyperbolic system of conservation laws [2, 71 

u, + f($ = 0 (2.1) 

u(t* x) = (u,, . . . . u,), f(u) = ifr, . . . . fm) 

is called the complete system [8) with a convex extension [9] if it allows of the additional closing 
conservation law 
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U(u), + F(u), = 0 (2.2) 

where U, uf, = F, with a convex function (entropy function) U(u), that is, ,U,, > 0. It was shown in 
[8-111 that such a system in the canonical variables w = w(u) = U, can be written in the symmetric 
form 

Aw,+Bw,=O 

A=@,,>O, @=w.u-U; B=‘l“,,, Y=w.f-F 

The closing conservation law (2.2) of the complete system (2.1) was proposed for use [7,9] in selecting 
the stable discontinuous solutions, as solutions of (2.1), which, in a weak sense [7], satisfy the entropy 
inequality 

U(u), + F(u), s 0 

In the shock wave front x = x(t), this inequality takes the form 

(2.3) 

[DU- F]<O (2.4) 

where D = x’(t) is the propagation velocity of the shock wave and [f] is the discontinuity in the function 
f(t, X) on the shock wave front, that is 

It has been suggested in many papers (see [12-141, for example) that, in the case of complete system 
of conservation laws (2.1) with a convex extension (2.2) the entropy condition of stability (2.3), (2.4) 
guarantees the unique solvability “in the large” of the Cauchy problem in a certain class of piecewise- 
continuous functions. In this connection, the existence of the convex extension (2.2) was put forward 
as the decisive requirement in the correct formulation of the hyperbolic system in the form of a complete 
system of conservation laws. However, the rigorous application of this requirement assumes that there 
is a complete match between the domain of convexity of the closing conservation law and the domain 
of hyperbolicity of the differential model, which many actual models cannot satisfy in principle (in 
particular, not one of the models of two-layer “shallow water” proposed in [l] meets this requirement). 

As a result, at the present time, in the theory of hyperbolic systems, a quite unusual situation has 
built up when some researchers at once reject whole classes of differential models which do not permit 
a convex extension in the whole of the hyperbolicity domain as being incorrect while others who are 
working with these models completely ignore the very idea of a convex extension, in spite of the fact 
that is arises in the most natural way in the most developed hyperbolic systems such as, for example, 
the system of conservation laws in gas dynamics. 

A compromise approach is proposed in this paper which, on the one hand, reconciles these two 
opposing points of view and, on the other hand, allows of a far wider use of the concept of a convex 
extension to analyse the correctness of a complete system of conservation laws. Within the framework 
of this “softer” approach, the domain of convexity Qc of the entropy function U 

I, 
u) of the correct complete 

system may or may not coincide with the whole of its hyperbolic domain Q (here, Qc C Qh always), 
but it must have the maximum compatibility with it when compared with all the other possible complete 
systems which are permitted by the differential model. In particular, if we have two different complete 
systems of conservation laws with domains of convexity Qf and s25 which are obtained from one and 
the same differential hyperbolic system (2.1) and, at the same time, L$ C Qf, the complete system with 
the domain of convexity Qt will satisfy the given criterion of correctness to a greater degree. 

In Section 3, this criterion for the correctness of a complete system of conservation laws is tested 
using the example of the well-known model of single-layer shallow water and, in Section 4, it is applied 
to select the correct complete system of conservation laws in a model of two-layer “shallow water’ with 
a free upper boundary. The shock waves which are permitted by the Hugoniot conditions of this complete 
system are studied in Section 5 and those which are permitted by the condition for the convexity of its 
entropy function (total energy) are investigated in Section 6. In Section 7, those shockwaves which are 
stable are picked out using the entropy (energy) inequality (2.4). Special two-layer discontinuous waves 
in which there is no flow across a discontinuity in one of the layers (such discontinuous waves are called 
“natural dams”) are investigated in Section 8. These results are extended to the spatially two-dimensional 
case in Sections 9-12. 



Stable shock waves in two-layer “shallow water” 91 

SINGLE-LAYER “SHALLOW WATER” 

It is well known [2,8] that, in the complete system of conservation laws of single-layer “shallow water”, 
the laws of conservation of mass 

and of total momentum 

h, + qx = 0 (3.1) 

q, + (qu + gh*B, = 0 

appear as the basic conservation laws while the law of conservation of total energy 

(3.2) 

e, + (q( u * + 2gh)), = 0 (3.3) 

appears as the closing conservation law where h is the depth of the flow, q is the flow rate, u = q/h is 
the velocity, g is the acceleration due to gravity and e = qu+ gh* is the total energy, which, in the given 
case, plays the role of the entropy function. On writing the total energy as a function of the basis variables 
u = (h, q), we obtain 

e(h. q) = q*/h + gh* (3.4) 

Since this function is convex when h > 0, that is, in the whole of the hyperbolic domain of system 
(3.1) (3.2), the domain of convexity of the “entropy function” (of the total energy (3.4)) of the complete 
system (3.1)-(3.3) is thereby ideally matched with its hyperbolic@ domain (these domains are identical). 

The equation 

u,+(u*/2+gh),=O (3.5) 

is the differential corollary of system (3.1) and (3.2) and is the law of conservation of local momentum 
of each fluid particle along its streamline. Unlike in the case of the complete system (3.1)-(3.3), the 
complete system which is obtained with the basic conservation laws (3.1) and (3.5) and the same closing 
law (3.3) has an “entropy function” (total energy). 

e(h, u) = u*h + gh* (3.6) 

which is only convex in the case of subcritical flows ]u 1 c@ and, hence, system (3.1)-(3.3) satisfies 
the criterion of correctness, which has been proposed above to a greater degree than system (3.1), (3.3), 
(3.5). 

Finally, if one takes the laws of conservation of mass (3.1) and local momentum (3.5) as the basic 
conservation laws and the law of conservation of total momentum (3.2) as the closing conservation law, 
then the “entropy function” (the total momentum) q(h, U) = h * u of such a “totally unphysical” complete 
system is not convex for all values of the basic variables h and u. Hence, in the case of the well studied 
model of single-layer ‘shallow water”, the criterion proposed above works quite successfully by uniquely 
picking out the physically correct complete system (3.1)-(3.3). 

We now recall how the stable shock (discontinuous) waves in system (3.1)-(3.3) are picked out using 
the the entropy (2.4) ( energy) condition. For this, changing to a system of coordinates in which the 
velocity of the shock wave D = 0 and writing in it the Hugoniot conditions for the basic conservation 
laws (3.1) and (3.2) and the entropy condition of stability (2.4), we obtain for the closing total energy 
conservation laws (3.3) 

[q] = 0 =a q1 = qo = q f 0 (3.7) 

[qu +gh2/2]=q2[h-‘]+g[h*]/2=0 (3.8) 

[q(u* + 2gh)] = q[u* + 2gh] > 0 (3.9) 

Assuming, to fix our ideas, that q > 0, that is, that the flow across the discontinuity is directed along 
the x axis, we rewrite the energy inequality (3.9) in the form 

[u* +2ghl=[Wg-q2~h, +h,Mh,h,)*)>O (3.10) 
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Since, as follows from (3.8) 

4* = -&+2*]/(2[K-‘]) = gh,&#r, +&)/2 (3.11) 

on substituting this value of the flow rate into inequality (3.1), we finally have 

dhl(4 - (h, + ho>* w&N = -g[h13 lwQk3,) > 0 

This means that, when q > 0, for a stable shock wave 

[h]=h, -h,<O*h, <h, 

that is, the depth of the water increases when it moves across the shock wave front. 
It is interesting to note that the Hugoniot conditions, written when D = 0 for the law of conservation 

of local momentum (3.5), have the form 

[IP/2+gh]=O 

It follows from this that, if the laws of conservation of mass (3.1) and local momentum (3.5) are taken 
as the basic laws, then, by virtue of (3.7) and (3.9), the total energy in this system at the discontinuities 
will also be conserved, as a consequence of which conservation law (3.3) corresponding to it cannot be 
used as the closing conservation law to select the stable shock waves. 

The energy method described here will next be applied to pick out the stable shock waves in two- 
layer “shallow water”. 

4. TWO-LAYER “SHALLOW WATER” 

The differential equations for two-layer “shallow water” with a free upper boundary have the 
form [l] 

h,+q,=O, H,+Q,=O (4.1) 

u,+(u*/2+g(h+H)),=O, V,+(V*/2+g(H+hh)),=O (4.2) 

where h, q, u = q/h are the depth, the flow rate and the velocity in the upper layer, H, Q, V = Q/H are 
the same quantities in the lower layer and h < 1 is the ratio of the densities of the upper and lower 
layers. Equations (4.1) are the laws of conservation of mass and Eqs (4.2) are the laws of conservation 
of local momentum in each of the fluid layers. 

It has been shown [l] that system (4.1) (4.2) has two further, linearly independent conservation laws: 
of the total momentum 

a=Q+kq (4.3) 

in the form 

a, +(QV+Ap +g(p/2), =O; cp= H* +Ah* +2hHh (4.4) 

and of the total energy 

e=QV+hqu +gcp (4.5) 

in the form 

e, + (Q(V* + QH,,, I+ hq@ * + W-f, )), = 0, (4.6) 

H,,,=H+llh, H,=H+h 

By analogy with the single-layer case, we take the laws of conservation of mass in the layers (4.1) 
and the law of conservation of the total momentum (4.4) as the basic laws and the law of conservation 
of the total energy (4.6) as the closing law. As a result, the classical problem arises of the choice of the 
one further missing (in this case, the fourth) conservation law. 
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It has been shown [15] that the use of the criterion proposed here uniquely singles out the law of 
conservation of the velocity’jump y = V - u on the interface of the layers, following from (4.2), as this 
fourth basic conservation law 

y,+((V2-U2)/2-pgh),=0; p=l-h 

This is associated with the fact that the total energy (4.5) written as the function 

e(h.H,ci,y)=(cx2+hhHy2)l(H+l.h)+g(H2+hh2+21.hH) 

which depends on the basic variables u = (h, H, a, y) is convex subject to the condition 

(4.7) 

111<$ $ ( (c - (2 - 4Pp-3)X) 
1 

, b=l+hr, 

where 

r=hlH 

are the variables which the condition for the hyperbolic of system (4.2), which was 
in an form in is written. If, instead of any conservation law 

having meaning is as the fourth conservation law as, for the law 
conservation of momentum in one the layers (4.2) the law conservation of the 

in the momentum p V- hv the interface the layers or, finally, the of conservation 
of (4.1) and of momentum (4.2) the layers, are as the laws then, all of 
cases, the domain of convexity the total energy as of the 

-v *)(gH - V*) Ag*hH 

which 
It is obvious that of the velocity each fluid layer, 

are is hyperbolic, which only 
is constraint on in the layers. 

of conservation (4.7) also in limit cases of models which 
have 

5. SHOCK WAVES PERMITTED THE HUGONIOT 

in system of coordinates which 
D 0, we obtain the following relations a two-layer analogue of conditions 

(3.7) 

1ql= 0 * 41 = qo = 9. iQl= 0 =a Q, = Q, = Q (5.1) 

[QV+hqu +gcp/2]=Q*[H-‘]+hq*[h-‘]+g[cp]/2=0 (5.2) 
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[v*-v2-2~gh]=Q*[H-*]-q*[h-*]-2~g[hl=0 (5.3) 

Equations (5.2) and (5.3) are a linear system in Q* and ~7~. Solving this system, taking account of the 
fact that [h] f 0 and [H] f 0 (otherwise, no discontinuity exists), we find 

Q* = g(4wd-~w) 

2h[ H-7 

, 42 = _ g(4ldhl+ fii[w 
21;[h-’ ] (5.4) 

The non-negative property of the right-hand sides in (5.4) (which are the two-layer analogue of relation 
(3.11)) leads to the following constraints on the change in depth at the discontinuity 

(h[cpJ - 4hp[h])[ H13 0, (%+N + 4Nhl)[hl3 0 (5.5) 

Further, without loss of generality, we shall assume that 

H,=I, [H]<O=aH,<Ho=l 

If follows from this that the first of the inequalities in (5.5) can be rewritten in the form 

4Whla k’l 

If the condition 

[/z]<O * h, <h, 

(5.6) 

(5.7) 

(5.8) 

holds simultaneously with (5.6), then the fact that the second inequality of (5.5) is satisfied follows at 
once from the relation 

[cp] = [H* + Ah* + 2liHh] c 0 

while the fact that inequality (5.7) is satisfied follows from the chain of inequalities 

4&[h]-i[q]>4hp[hJ-ti[h*]>h[h](4-hi)= 

= --h[h13 l(h,h,,) > 0, ii = h, +h, 

This means that any discontinuities for which the depth in the two layers simultaneously decreases or 
increases upon passing through the shock were front are permitted by conditions (5.5). 

The set of permissible depths (5.8) is located within the angle Aoh0 in Fig. l(a) in the plane of the 
variables (ho, h,). 

We will now consider the case when 

[II] > 0 3 h, > ho (5.9) 

when the second inequality of (5.5) can be written in the form 

k[cp] + 4p[h] 3 0 (5.10) 

Applying formula [cp] = h[Hi] + p[H*], we transform inequality (5.1) in the following manner 

&i[H,2]+p[H2])+4p[H, -H]=(hi@ +4~)[H,l+~(ijH--NH]= 

=C~[H,I+CI[HI~)~(H,H~)~O 

a=GH,, + 4pH,Ho >O. P= HI +Ho, P,, = H,,, +H,o 

As a result, taking (5.6) into account, we have 

[ H,]a -~([H]~l(aH,Hr,)>0 (5.11) 



Stable shock waves in two-layer “shallow water” 95 

2 

h 

1.5 ho 

0 I 2 3 lo 

Fig. I 

This means that the total depth H, must increase on passing through this discontinuity and, consequently, 
the domain of depths he, hi which are permitted by the Hugoniot conditions, subject to conditions (5.6) 
and (5.9), lies in the plane of the variables (ha, hi) above the line hi = ha - Lq. 

We now transform inequality (5.7). To do this, using the formula [cp] = [H,,,] + 
as follows: 

Q[h*], we rewrite it 

~([H~l+hCL[h2])-4h~[h]=~7?,[H,]+SL[hJ(i;~-4)= 

= (~~#,I+ hpL[l~]~)l(h,l+,) d 0, flm = H,, + H,,,, 

Hence, taking (5.9) into account, we obtain 

[H,] c - ii.+t[h13 /(Kg,,,) < 0 (5.12) 

This means that the total mass H, per unit length of the flow decreases an passing through the 
discontinuity being considered and, consequently, the domain of depths ha, hi which are permitted by 
the Hugoniot conditions, subject to conditions (5.6) and (5.9), lies in the plane of the variables (ha, hi) 
below the straight line hi = ho - [HI/h. 

Hence, in the case of (5.6) and (5.9) (that is, when the depth of the lower layer decreases and the 
depth of the upper layer increases on passing through the discontinuity) the depths of the upper layer 
which are permitted by the Hugoniot conditions satisfy the bilateral inequality 

ho-[Hl/h>h, >ho--[HI (5.13) 

The set of these depths (obtained from the numerical solution of inequalities (5.7) and (5.10)) constitutes 
the band BCDE in Fig. l(a) for 

Ho= 1, H, =O, 5, x=0,5 (5.14) 

It follows from (5.13) that the width of this band tends to zero when [H] + 0 or h + 1 and increases 
without limit when h + 0. 

It is interesting to note that, if the laws of conservation of local momentum in the layers (4.2) are 
taken as the basis laws, instead of (4.4) and (4.7) the Hugoniot conditions corresponding to them will 
have the form 
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[v2 /2+g(H+h)]= $-2]+g[HJ=O 

[V2/2+g(H+hh)]= $[x*]+g[H,1= 0 

and the discontinuities in the depths, which are permitted in this case, will thereby be determined by 
the inequalities 

which, as can be easily seen, are equivalent in the case of condition (5.6) to inequalities (5.8) and (5.13). 
This means that the set of discontinuities in the depth, permitted by the Hugoniot conditions, of the 
simplest incorrect system (4.1), (4.2) contains within itself the set of discontinuities in the depth, 
permitted by the Hugoniot conditions, of the correct system (4.1) (4.4) (4.7). 

6. SHOCK WAVES PERMITTED BY THE CONDITION OF CONVEXITY 
OF THE TOTAL ENERGY 

In order that the flow on both sides of the discontinuity should satisfy the condition of the convexity 
of the total energy (4.8) we require, in particular, that it guarantees its hyperbolic form. In this case, 
two fundamentally different situations are possible: when the fluid in both layers flows in a single direction 
through the discontinuity (we will call such discontinuities shock waves with unidirectionalflows (USW)), 
and when the fluid flows in different directions through the discontinuity in the lower and upper layers 
(we will call such discontinuities shock waves with flows in diflerent directions (DSW)). 

In the case of USW, the following additional constraints on the values of the depths on the two sides 
of the discontinuity follow from (4.8) when (5.4) is taken into account 

,. 

where 

I~/H;-~/hiI<Wi, i=O,l (6.1) 

Q = ((4hy[h]- &])l[H-‘])~, q = (-(4u[h] + I;l[cp])l[h-‘])x (6.2) 

(6.3) 

b,=l+?q, ci=1+L2q3. ,q=h,lH, 

The depths which satisfy the convexity conditions (6.1) were determined numerically. They are shown 
in Fig. l(a) in the form of the hatched sets, located within the domains (h,, hl) and BCDE, which are 
permitted by the Hugoniot conditions (5.1)-(5.3). 

In the case of DSW, the convexity conditions (4.7) and (4.8) take the form 

lQ’/Hi+qlh,jCv;, i=O,l (6.4) 

Numerical calculations show that the constraints (6.4) are far stronger than (6.1) and the depths which 
are satisfied by them are located in Fig. l(a) only inside the strip BCDE. Therefore, when 

Ho = 1, H, = 0.75, A = 0.5 (6.5) 

the sets of these depths are shown in Fig. l(b) in the special system of coordinates zozl, where 

20 =(h, +h,+lHl)l&i, zI =(h, -h,+[H])I& (6.6) 

The z0 axis of this system of coordinates lies on the line h, = ho - [HI and the z1 axis of the system is 
perpendicular. The depths (ho, hl), which satisfy conditions (6.4), are shown in Fig. l(b) in the form of 
criss-cross hatched sets which are adjacent to the lower boundary BC and the upper boundary ED of 
the domain BCDE, shown in Fig. l(b) in far greater detail than in Fig. l(a). Here, in Fig. l(b) (unlike 



Stable shock waves in two-layer “shallow water” 97 

in Fig. l(a), not only the intersection of the sets (6.4) is shown but each of these sets is also shown 
separately: the first of them, which is obtained when i = 0, is shown hatched with straight lines sloping 
to the right while, the second, which is obtained when i = 1, is shown hatched with lines sloping to the 
left. 

The numerical calculations showed that, in the case of a continuous change in the parameters EZr 
and h (which, in the case of Fig. l(a) are determined by formulae (5.14) and, in the case of Fig. l(b), 
by formulae (6.5)), the domains of convexity of the total energy also change continuously. However, 
the pattern of their arrangement remains practically unchanged. 

7. STABLE SHOCK WAVES 

In the case of total energy closing conservation law (4.6), the “entropy” condition for stability (2.4), 
when account is taken of the fact that D = 0, has the form 

[FQ+Xfq]>O, F=V2+2gH,, f=v2+2gH,, (7.1) 

Using the fact that, by virtue of (5.3) [F] = [f], we obtain the inequality 

alf I= a[v2 + 2gH,]>O (7.2) 

which is the two-layer analogue of the single-layer stability condition (3.9). 
Let us assume that the total momentum (4.3) is positive. Then, using relations (5.4) and (6.2), 

inequality (7.2) can be rewritten in the following form 

2~[f]/g=4i[H,]+~*[h-*]=4~[H,]-h(4~[h]+i;l[~])= 

=4(h+h~)[H,]-4~[h]-h~(h[H,Z]+~1[H~J)=h~[H,](4--~)+~[H,](4-ii~)= 

=(hH[-~,][h]* +h[-~,irH]~)i(~,~~h,h,)>o (7.3) 

This inequality is directly satisfied in the case of conditions (5.6) and (5.8), which mean that the depth 
of the fluid in the two layers increases on passing through the discontinuity in the direction of the x 
axis (the set of such depths is located within the angle&ho in Fig. l(a). In the case of conditions (5.6) 
and (5.9), inequality (7.3) selects a certain subset in the set of depths which are permitted by the Hugoniot 
conditions (5.1)-(5.4). In Fig. 2(a), this subset is indicated by hatching with lines sloping to the left, 
while the set of depths which satisfy the convexity conditions (6.1) is indicated by hatching with lines 
sloping to the right; as a result, the common part has criss-cross hatching. 

Hence, the USW, for which Q > 0 and q > 0, are stable for depths with values which lie within the 
angle AOh,, in Fig. l(a) and within the domain in Fig. 2(a) indicated by the hatching with lines sloping 
to the left. At the same time, the USW, for which Q > 0 and q < 0, are only stable at depths, the values 
of which, in Fig. 2(a) fill that part of the domain BCDE where there is no hatching with lines sloping 
to the left. 

The profiles of the three qualitatively different stable discontinuous waves are shown in Fig. 3 which 
correspond to the pointA in Fig. l(a) and to the points A2 andA in Fig. 2(a). the discontinuous wave 
corresponding to the point A, is shown in Fig. 3(a), the point A2 in Fig. 3(b) and to the point A3 in 
Fig. 3(c). In Fig. 3, the interfaces of the layers are depicted by the bold-face lines and their free surfaces 
by the thinner lines. The arrows denote the directions of the flows in the layers. The values of the flow 
rates and velocities in the layers presented in Fig. 3 were calculated assuming the acceleration due to 
gravity g = 9.8. 

In the case of the DSW, for which Q > 0 and q < 0, the inequality a = Q + Aq > 0 takes the form 
a - hq > 0, and the quantities Q and 4 are determined using formulae (6.2). The set of depths 
(ha, hi) which satisfy this condition is shown in Fig. 2(b) in the form of the two domains indicated by 
the hatching with linessloping to the left. Similarly, the DSW, for which Q < 0 and q > 0 will be stable 
when the inequality (Q- Aq)[f] < 0 is satisfied and, consequently, the values of the depths which are 
permissible for them occupy the unhatched parts of the domain BCDE in Fig. 2. 

The depths (ha, hr), which satisfy the convexity conditions (6.4), are shown in Fig. 2(b) (in the same 
way as in Fig. l(b) in the form of the two criss-cross hatched sets. It follows from Fig. 2(b) that, in the 
case of conditions (6.5) the DSW which satisfy the convexity condition (6.4) are stable only when the 
flow is directed along the x axis in the lower layer and in the opposite direction in the upper layer, that 
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is, when Q > 0 and q < 0. Numerical calculations showed that this result also remains true in the case 
of other permissible values of the parameters Ht and A. 

8. “NATURAL DAMS” 

The shock waves for which there is no fluid flow through the discontinuity in one of the layers are 
intermediate between USw’s and DSW’s. Such unusual two-layer discontinuous waves are called natural 
dams in the lower layer (when Q = 0) and upper layer (when q = 0). It can be shown that, when 
Q = 0, the permissible depths of the upper layer lie on the upper boundary DE of the domain BCDE 
and, when q = 0, they lie on its lower boundary BC (compare Figs l(b) and 2(b). 

When Q = 0, it follows from the first equation of (5.4) that 

4Mhl= &PI (8.1) 

Expressing [cp] from here and substituting the result into the second equation of (5.4), we find that the 
flow rate in the upper layer is given by the formula 

q2 = 2pgh;ho’ I h (8.2) 

For such natural dams, the convexity conditions (6.1) take the form 

2h,(&k)% <yo, 2b(&h)’ <WI (8.3) 

Here, the functions vi are given by (6.3) and the parameter h, taking account of the fact that 
p = 1 - h and cp = Hz + Ah2 + 2kHh, is found from Eq. (8.1) using the formula 

h = ((p’ - 16i[h][H2J)x -+(8[h]). p = i[h2 + 2Hhl-4[hl (8.4) 

As a result of constraint (8.3) unlike in (6.1) when Ho = 1, they depend solely on the three arbitrary 
parameters HI, ho and hI. 

(4 

0 2 4 

Fig. 4 
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The set of depths (ho, hi), which satisfy the convexity condition (8.3) when Ho = 1 and Hi = 0.75 is 
nlotted in Fig. 4(a) in the system of coordinates (6.6) in the form of the domain which is bounded by 
ihe closed curve ABC. The isolines of h, calculated using formula (8.4) are shown by the thin curves 
in this figure. Numerical calculations showed that, when Hi increases up to Ho = 1, the domain 
ABC is “stretched out” in an unbounded manner and, when Hi is reduced, it shrinks. Here, a critical 
value H; = 0.41H0 exists such that, when HI < Hi, the domain ABC ceases to exist, that is, natural 
dams in the lower layer are not permitted by the convexity conditions (8.3) for such values of the 
depths HI. 

From the energy condition of stability (7.2) when Q = 0 and (8.2) is taken into account, we obtain 

q[v2+2gH”]=q(q2[h-*]+2g[H,])=2gq(~:~[h-*]!h+[H,I)= 

=2gq([H,l-~L[hl)=2gq[H,l ‘0 

It follows, as a result when (5.12) is taken into account, that, in order for a natural dam to be stable in 
the lower layer, it is necessary for the inequality q c 0 to be satisfied, which means that the flow in the 
upper layer is in the opposite direction to the x axis. An example of such a natural dam (which 
corresponds to the point A4 in Fig. 2(b) and Fig. 4(a) is shown in Fig. 5(a). 

We will now consider a natural dam in the upper layer for which q = 0. In this case, it follows from 
the second equation of (5.4) that 

4@[h] + ti[cp] = 0 (8.5) 

Expressing [cp] using this equation and substituting the result into the first equation of (5.4), we obtain 
that the flow rate in the lower layer is given by the formula 

Q* = 2jtg[h]I([H-‘Ifi) (8.6) 

In the case of such natural dams, the convexity conditions (6.1) take the form 

2H,(-@z]~/[H*I)X <we, 2H,(-u[h]L/[~*I)K <Vi (8.7) 

where the functions vi are found from formula (6.3) and the parameter h is found from Eq. (8.5) using 
the formula 

h=(4[h]-~[H2])l(f?[h2+2Hh]+4[h)) (8.8) 
In the system of coordinates (6.6), the set of depths (h,, hi), which satisfy the convexity conditions 

(8.7) when Ho = 1 and HI = 0.75, is the domain bounded by the curve ABC and the z. axis in Fig. 4(b). 

Fig. 5 
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The isolines of h, calculated using formula (8.8), are shown by the thin curves. It follows from this figure 
(and, also, from the results of other calculations) that the distinctive feature of a natural dam in the 
upper layer is that, for finite Hi, they can only exist when there is a very small jump in the total depth 
on the line of the discontinuity ([H,J < 0.004) in the case of Fig. 4(b). Th is means that the upper boundary 
of the flow in the case of such discontinuities will be visually perceived as a horizontal surface (see 
Fig. 5(b). 

When q = 0, we obtain from the energy condition for stability (7.2) 

Taking account of (5.11) it follows from this inequality that, in order for a natural dam to be stable in 
the upper layer, it is necessary that Q > 0, that is, the flow in the lower layer must be directed along 
the x axis. An example of such a natural dam (which corresponds to the point A5 in Fig. 2(a) and 
Fig. 4(b) is shown in Fig. 5(b) and 5(c). In Fig. 5(c), the discontinuity in the free surface, corresponding 
to this natural dam, is shown in a smaller scale along the H axis. 

9. TWO-LAYER “SHALLOW WATER” IN THE 
TWO-DIMENSIONAL CASE 

The possibility of its natural extension to the spatially two-dimensional case is a further important and 
simultaneously independent criterion of the correctness of the proposed complete system of conservation 
laws for the model of two-layer “shallow water”. Taking this into account, we will now consider the two- 
dimensional flow of two-layer “shallow water” over a horizontal bed assuming that there is no friction 
between the water and the bed and between the layers. Such a flow is determined by the depths h and 
H and the vertically averaged horizontal velocities v = (ui, uz), V = (VI, V,), of the upper and lower 
layers respectively, which depend on the time t and the horizontal coordinates x and y. 

The differential equations describing this flow can be obtained from the integral laws of 
conservation of mass and total momentum in each of the fluid layers using a method similar to that 
proposed in [2] for deriving the equations of single-layer “shallow water” in the one-dimensional case. 
The above-mentioned equations have the form 

h, + div q = 0, H,+divQ=O (9.1) 

q,+div(q@v)+ghVH,=O, Q,+div(Q@V)+gHVH,=O 

q=(ql,q2)=hv, Q=(QI,Qz)=HV, divq=q,,+qz, 

div tq @ v) = ((91 uI L + (91 My9 GwI ), + (i72qdy) 

(94 

Equations (9.1) are the laws of conservation of mass in the layers and Eqs (9.2) describe the change in 
the total momentum in each of the layers. 

Euler’s equations 

v, + (vV)v + gVH, = 0, V, + (VV)V + gVH, = 0 (9.3) 

are the differential corollaries of system (9.1), (9.2) which describe the change in the local momentum 
in the layers, the law of conservation of total momentum 

ol=Q+A.q (9.4) 

in the form 

a,+div(Q@V)+hdiv(q@3v)+gV(p/2=0 (9.5) 

and the law of conservation of total energy 

e=Q-V+Aq.v+gcp (9.6) 

in the form 
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where 
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e, +div(FQ+&)=o 

F=Iv12 +2gH,, f=lv12 +2gH, 

(9.7) 

(9.8) 

On transforming equations (9.3) using the formula 

(vV)v=V(Ivl* /2)-[vxrotv]=V(IvI* /2)-WV’ 

in which w = u2X - ulY is a plane vortex and v ’ 
velocity vector v, we obtain the equations 

= (2)~ - ul) is a vector which is perpendicular to the 

vI+v~/2=wvl, V,+VF12=wv1 (9.9) 

which are the two-dimensional analogue of the divergent equations (4.2). Equations (9.9) themselves 
are only divergent in the case of potential flows in the layers for which w = W = 0. In this case, system 
(9.1), (9.9) can be obtained using the potential method in a similar way to that employed in [l] when 
deriving the one-dimensional equations (4.1) and (4.2). 

On-applying the curl operator to Eqs (9.9), we obtain the scalar divergent equations 

w, + div (WV) = 0, W, + div (WV) = 0 (9.10) 

which are the laws of conservation of plane vortices w and Win each of the layers of a two-layer fluid. 
In the case of smooth flows, these conservation laws are, in essence, the spatially two-dimensional 
analogue of Thompson’s theorem on the conservation of circulation of velocity. 

By analogy with the one-dimensional case, we take the scalar laws of conservation of mass in the 
layers (9.1), the vector law of conservation of total momentum (9.5) and and the vector equation 

y, + (VV)V - (vV)v - pgVh = 0 (9.11) 

which follows from (9.3) and describes the change in the velocity jump y = V - v at the interface of 
the layers, as the basic conservation laws of system (9.1)-(9.10). Next, it will be shown that, despite the 
non-divergence of Eq. (9.11), it can be used to obtain the Hugoniot conditions correctly on the lines 
of discontinuities. 

As the closing conservation law, we take the law of conservation of total energy (9.7). Here, as in 
the one-dimensional case, the total energy (9.6), written as the function 

e(h,H,~,y)=(Ia~2+~H~y~2)/(H+hh)+g(~2+hh2+21chH) (9.12) 

which depends on the basic variables u = (h, H, CI, y), where 01 = (al, CI~), y = (yl, yz), is convex in the 
case of conditions (4.8) and (4.9) and, in this function, the scalar quantity y has to be replaced by the 
plane vector y. This convexity condition (which, in the case of two-dimensional flows, is a natural 
alternative requirement of hyperbolicity) will later be used to select the permissible two-layer flows. 

10. THE HUGONIOT CONDITIONS IN THE TWO-DIMENSIONAL CASE 

In order to obtain the Hugoniot conditions, which the system of basic conservation laws (9.1), (9.Q 
(9.11) permits, we consider any element of a smooth line of discontinuity of a certain generalized solution 
of it and use a system of coordinates associated with this element with the x axis directed along the 
normal to it and they axis directed along the tangent to it. We shall denote the normal and tangential 
components of vector quantities f by f,, and fT and, here, for convenience in making comparisons 
with the formulae for the one-dimensional case, we shall sometimes omit the subscript n on the 
normal components. We shall also take into account that the velocity of a line of discontinuity D = 0 
in the system of coordinates considered and all the quantities are fairly continuous functions of the 
variable y. 

As a result, as in the one-dimensional case, from the scalar equations (9.1) and the normal components 
of vector equations (9.5) and (9.11) we obtain relations (5.1)-(5.3), from which formulae (5.4) and the 
constraints on the jumps in the depths on at discontinuity (5.5) follow. Hence, the analysis carried out 
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[Qv, + hl = QWJ + liq[vJ = 0 (10.1) 

which establishes the relation at the discontinuity between the normal components of the flow rates in 
the layers and the jumps in the tangential components of the velocity. In this connection we note that, 
in the case of the single-layer, two-dimensional model of “shallow water”, for which the law of 
conservation of total momentum has the form 

q,+div(q@v)+gVh*LZ=O 

the Hugoniot condition for its tangential component, like (10.1) can be written in the following manner: 
q[u,] E 0. As a result, it follows that the single-layer two-dimensional model, which is similar to the 
equations of classical hydrodynamics [16], only allows of two types of discontinuities: shock waves for 
which q = q,, f 0, [u,] = 0 and contact discontinuities for which q = qn = 0, [u,] f 0. At the same time, 
it follows from (10.1) that the two-layer, two-dimensional model not only allows of shock waves and 
contact discontinuities but, also, discontinuities of a mixed type, for which both the fluid flow through 
the discontinuity as well as the jump in its tangential velocity component are non-zero. 

Since the tangential component of Eq. (9.11) cannot be written in divergent form with respect to the 
variable x, it cannot be used directly to obtain a further relation at the discontinuity. In order to do 
this, is necessary to derive a scalar integral corollary of Eq. (9.11) which, taking (9.9) into account, is 
conveniently written in the form 

Introducing the notation 

y,+V(F-f)l2=WP-wvL (10.2) 

(p=(F--j)/2, 81Mw*-wvL 

we write the integral analogue of conservation law (10.2) as 

j (yg, + CpVg - vg)dtdrdy = 0, v/go. x, Y) E c; (10.3) 

where Cr is a class of infinitely differentiable, finite functions. In formula (10.3) and henceforth, if the 
domain of integration is not shown, it means that integration is carried out with respect to the carrier 
of the function g. 

To obtain the required integral corollary of conservation law (10.3), we use the method developed 
in [17]. Substituting the first derivative of the trial function, instead of the trial function g itself, into 
the first component of vector equation (10.3) and substituting the derivative g, instead of g into the 
second component of this equation, we obtain the following integral corollaries of conservation law 
(10.3) 

J (Y ItTy, + w, -~,g,)drdxdy=O, VgeC; 

J (ysxr + w, - v2g,)dtdxdy = 0, Vg E Co” 

(10.4) 

(10.5) 

Integrating the first term of these equations by parts and then subtracting Eq. (10.5) from Eq. (10.4) 
we obtain the scalar conservation law 

J ((w-w)g,+(wV,-wu,)g,+(WV2-w~2)g,)dtdxdy=0, VgEC; 

which, when written in differential form, becomes 

(W-w),+div(WV-wv)=O (10.6) 

Hence it follows that, in the system of coordinates associated with the line of discontinuity, the 
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additional Hugoniot condition 
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]V,W - u,w] = 0 (10.7) 

holds, which signifies continuity on the line of the discontinuity of the jump in the vorticity at the interface 
of the layers. In this case, each of the vortices separately will not be conserved at the discontinuity in 
the general case, despite the fact that the change in the vortices in smooth flows is described by divergent 
equations (9.10). 

Hence, in the case of non-potential flows, a vector law of conservation of the jump in velocity (9.11) 
is realized at discontinuties in the form of a law of conservation of the jump in the normal component 
of the velocity (5.3) and a law of conservation of the jump in the vorticity (10.6), (10.7). 

11. THE CONDITIONS OF CONVEXITY OF THE TOTAL ENERGY IN 
THE TWO-DIMENSIONAL CASE 

The requirement that the total energy (9.6) should be convex (4.8) on both sides of a line of discontinuity 
leads, first of all, to the following constraints on the jump in the tangential component of the velocity 
at the interface of the layers 

(11.1) 

where the functions vi are determined using formula (6.3). When conditions (11.1) are satisfied and 
(5.4) is taken into account, the constraints on the jumps in the depths at the discontinuity, which are 
additional to (5.5) follow: 

for USW 

Ie/H;-~/iz;I<(~?-2by:;/~)~, i=O,l 

and for DSW 

lelH,+qlh,I<(Wf-2~Y~iIR)J/Z, i=O,I (11.3) 

(11.2) 

where the quantities e and 4 are found from formula (6.2). 
If there is no jump in the tangential component of the velocity on both sides of the discontinuity at 

the interface of the layers, that is, if uri = Vri, then constraints (11.2) and (11.3) are identical to the 
analogous constraints (6.1) and (6.4) for one-dimensional flows. If, however, VTi + Z)Ti, then conditions 
(11.2) and (11.3) become much more rigorous. In this case, as follows from (lO.l), the jumps in the 
tangential components of the velocities in the layers [V,] and [u,] have different signs in the case of 
USW and the same signs in the case of DSW. 

The sets of depths, which satisfy convexity conditions (11.2) and (11.3), were determined 
numerically. For 

Ho=l, H, = 0.5, h =OS (11.4) 

v,,=o, u*o=l, VT, =l*[V,]=I, yro=-l (11.5) 

the set of depths (ho, hi), which satisfy inequality (11.2), is shown in Fig. 6(a) in the form of the two 
criss-cross domains located within the set AOho and BCDE, which are permitted by the Hugoniot 
conditions (5.4) (here, the quantity uT1, occurring in (11.2) when i = 1, was determined from the Hugoniot 
condition (10.1)). Th ese domains are also located within the two sets in Fig. 6(a) which are shown hatched 
with lines sloping to the right are obtained from inequalities (1.2) when Yri = 0, that is, when there is 
no jump on both sides of the line of discontinuity in the tangential component of the velocity at the 
interface of the layers (these sets are shown separately in Fig. l(a)). 

Constraints (11.3) are far stronger than (11.2) and, as was shown above (see Fig. l(b)), even when 
y~i = 0, the depths which satisfy inequality (11.3) are only located in Fig. 6(a) within the strip BCDE. 
Hence, when 

Ho= 1, H, = 0.75, h = 0.5 (11.6) 



Stable shock waves in two-layer “shallow water” 105 

2 

4 

0 0.5 I .o 1.5 ho 

0 I 2 3 zo 

Fig. 6 

v,, =a u,o = 0.25, v,, = 0.25 * [V,] = 0.25, yro = -0.25 (11.7) 

the depths (ho, hi) which satisfy conditions (11.3) are shown in Fig. 6(b) in the system of coordinates 
(6.6). The depths fill out the two criss-cross sets adjacent to the lower boundary BC and the upper 
boundary ED of the domain BCDE. Here in Fig. 6(b) (as in Fig. l(b)) not only the intersection of the 
sets (11.3) is shown but also each of these sets separately: the first of them, which is obtained when 
i = 0, is shown hatched with lines sloping to the right while the second, obtained for i = 1, is shown 
hatched with lines sloping to the left. 

12. STABLE DISCONTINUITIES IN THE TWO-DIMENSIONAL CASE 

It follows from the law of conservation of total energy (9.7) that the energy condition of stability, which 
assumes that there is a loss in the total energy at a discontinuity, has the following form 

[PQ,+~q,l=Q,[F+V,2l+~,[f+v,21>0 (12.1) 

F=V,2+2gH,, f =v,2+2gH, 

Since it follows from the Hugoniot conditions (5.3) and (10.1) that 

[Fl=[fl, QnWcl=-)cq&‘,l (12.2) 

on transforming, taking account of inequality (12.1), we obtain 

a,[~l+Q,~,WJ~O (12.3) 

a,=Qn+Aqn, Yr=~~~+~s~=Vr~+Vr~-~rl-U~o 

As a result, in the case of USW directed along the x axis (Q, > 0, qn > 0), using the notation (6.2) we 
have 

4 =@+W)fi +Qf2 >a (12.4) 

fi = ij*[H-*]+4~[H,l, f2 = 26$‘,1k 

In the case of USW directed in the opposite direction to thex axis (Q,, < 0, qn < 0), the energy inequality 
(1.23) takes the form Fr < 0. 
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Fig. 7 

Numerical calculations showed that, in the case of the parameters (11.4), (11.5), inequality (12.4) is 
satisfied in the whole of the domain&,, and in a certain subdomain of BCDE in Fig. 6(u). The above- 
mentioned subdomain is shown in Fig. 7(a) in the system of coordinates (6.6) by the hatched area with 
lines sloping to the left, while the set of depths which satisfy convexity conditions (11.2) are shown by 
the hatching with lines sloping to the right: as a result, their common domain is shown cross-hatched. 
A comparison of this figure with Fig. 2(a) shows that, in this case, the existence of a jump in the tangential 
component of the velocity leads to a considerable contraction of that part of the domain BCDE within 
which discontinuities with a positive direction of the flows in the layers (Q, > 0, q,, > 0) are stable and, 
correspondingly, to a noticeable expansion of the part of this domain within which discontinuities with 
a negative direction of the flows in the layers (Q, < 0, qn < 0) are stable. 

In the case of DSW, directed in the lower layer along thex axis and, in the upper layer, in the opposite 
direction, that is, when Q, > 0 and qn c 0, we obtain from (2.3) 

(12.5) 

The set of depths (h,, hi), which, for conditions (11.6) and (11.7) satisfy inequality (12.5), is shown in 
Fig. 7(b) in the form of the two domains which have been hatched with lines sloping to the left. In the 
case of DSW, directed along the x axis in the upper layer and in the opposite direction in the lower 
layer, that is, when Q, < 0 and qn > 0, the energy inequality (12.5) changes sign and takes the form 
F2 < 0. This means that the depths permitted by these discontinuities fill out the unhatched part of the 
domain BCDE in Fig. 7(b). 

The depths (ho, hi) which satisfy the convexity conditions (11.3) are shown in Fig. 7(b) in the form 
of two criss-cross sets. It follows from Fig. 7(b) that, subject to conditions (11.6) and (11.7), the DSW 
which satisfy convexity condition (11.3) are only stable when the flow in the lower layer is along the x 
axis and the flow in the upper layer is in the opposite direction, that is, when Q,, > 0 and q,, < 0. 
Numerical calculations showed that this result also remains true in the case of other permissible values 
of the flow parameters. 

13. STABLE CONTACT DISCONTINUITIES IN THE LAYERS 

Intermediate between two-dimensional USW (Q,,q, > 0) and DSW (Qnq, < 0) are those two-layer 
discontinuities for which there is no fluid flow through the discontinuity in one of the layers, that is 
Q, = Own = 0. In this case, taking (10.1) into account, three different situations are possible: 

(a) Q,, = q,, = 0. In this case, there is a contact discontinuity in both layers. We shall refer to such 
a two-layer discontinuity as a full contact discontinuity; 

(b) Q, = 0, q,, f 0, [u,] = 0. In this case, there is a contact discontinuity in the lower layer and a 
shock wave in the upper layer. We shall refer to such a two-layer combined discontinuity as a contact 
discontinuity in the lower layer (CDLL); 
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(c) 4n = 0, Q, # 0, [V,] = 0. In this case, there is a shock wave in the lower layer and a contact 
discontinuity in the upper layer. We shall refer to such a two-layer discontinuity as a contact discontinuity 
in the upper layer (CDUL). 

Note that the contact discontinuities in the layers become natural dams when yTyri = 0 (i = 0, l), that 
is, when V,, = I/rl, uro = url, which have been studied in Section 8. 

It follows from (12.3) that, when Q, = qn = 0, the total energy is conserved on passing through a 
discontinuity, which can be interpreted as an epergy instability of a full contact discontinuity (the analogy 
with classical hydrodynamics shows itself here [16]). At the same time, the energy condition of stability 
(12.3) allows of contact discontinuities in the layers: for a CDLL, it takes the from q,Jf] > 0 and, in 
the case of a CDUL, the following form: Q,[d > 0. As was shown in Section 8, it follows from the 
inequality q,Jf] > 0 in the case of the conditions Ho > H1 that qn < 0, and it follows from the inequality 
Q,[Fj > 0 that Q, > 0. This means that, when Ho > H1, in order for a CDLL to be stable, it is necessary 
for the flow in the upper layer to be in the opposite direction to the x axis and, conversely, in order for 
a CDUL to be stable, it is necessary for the flow in the lower layer to be along the x axis. 

In the case of a CDLL, it may be assumed without loss of generality that uTo = url = 0. Convexity 
conditions (11.2) and (11.3), when (8.1) and (8.2) are taken into account, then take the form 

2pgh; / i < gyf; /(2& - V,2,, 2&& 16 < gyf; /(2i) - V,: (13.1) 

where the functions vi are determined from formula (6.3) and the parameter h is found from Eq. (8.1). 

As an example, of depths (ho, Ho 1, HI = 

is plotted in Fig. in the system coordinates (6.6) in the form hatched domain. This is 
located within by the closed and is obtained 



108 V. V. Ostapenko 

This research was supported financially by a grant from the Committee for the Support of the Leading 
Scientific Schools (00-15-96-162). 

REFERENCES 

1. OVSYANNIKOV, L. V, Models of two-layer “shallow water”. Zh. Priki. Me/&. TewI. Fti. 1979,20, 2,3-14. 
2. ROZHDESTVENSKII, B. L. and YANENKO, N. N., Systems of Qua$inear Equations and rheirApplication in Gas Dynamics. 

Nauka, Moscow, 1978. 
3. LYAPIDEVSKII, Yu., The problem of the decay of a discontinuity for the equations of two-layer shallow water. In Dynamics 

of a Continuous Medium. Inst. Gidrodinamiki. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1981,.50, 85-98. 
4. LYAPIDEVSKII, V. Yu., The structure of a gravitational flow in a mixing liquid. Zh. Prikl. Mekh Tekh. Fir., 1998,39,3,79-85. 
5. TESHUKOV, V M., A hydraulic jump in the shear flow of an ideal incompressible fluid. Zh. Prikl. Mekh. Tekh. Fiz. 1995, 

36, 1, 11-20. 
6. TEKUSHOV, V. M., A hydraulic jump in a shear flow of a barotropic fluid. Zh. Prik/. Mekh. Tekh. Fiz., 1996,37,5, 73-81. 
7. LAX, F! D., Hyperbolic Systems of Consewarion Laws and the MathemaGcal Theory of Shock Waves. SIAM, Philadelphia, 1973. 
8. VOVEVODIN, A. E and SHUGRIN, S. M., Methods of Solving One-Dimensional Evolurion Equations. Nauka, Novosibirsk, 

1993. 
9. FRIEDRICHS, K. 0. and LAX, P. D. Systems of conservation equationswith a convex extension. Proc. Nat. Acad. Sci. CBA., 

1971,68,1686-1688. 
10. GODUNOV, S. K., An interesting class of quasilinear systems. Dokl. Akad. Narck SSSR, 1961, 139,3,521-523. 
11. SHUGRIN, S. M., A class of quasilinear systems. In: Dynamics of a Conrinuous Medium. Inst. Gidrodinamiki. Sib. Otd. Akad. 

Nauk SSSR, Novosibirsk, 1969,2,145-148. 
12. HARTEN, A., HYMAN, J. M. and LAX, I? D., On finite-difference approximations and entropy conditions for shocks 

Communs Pure and Appl. Math., 1976,29,297-322. 
13. GODUNOV, S. K. and ROMENSKY, E. I., Thermodynamics, conservation laws, and symmetric forms of differential equations 

in mechanics of continuous media. Comput. Fluid Dynamics. Review (Edited by M. Hafez and K. Oshima). John Wiley, 
Chichester, 199, 19-31. 

14. SEVER, M., Estimate of the time rate of entropy dissipation of systems of conservation laws J. Different Equat., 1996. 
130, 127-141. 

15. OSTAPENKO, V V, Complete systems of conservation laws for models of two-layer “shallow water”. Zh. Frikl. Mekh. Tekh. 
Fiz., 1999,40,5,23-32. 

16. LANDAU, L. D. and LIFSHITZ, E. M., Fluid Dynamics. Pergamon Press, Oxford, 1987. 
17. OSTAPENKO, V V, Increasing the order of weak approximation of the conservation laws in discontinuous solutions. Zh. 

Vychisl. Mat. Mat. Fiz., 1996,36, 10, 146-157. 

Translated by E.L.S. 


